Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

» » Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем

Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем

Различают термодинамические и кинетические факторы устойчивости,

К термодинамическим факторам относятся электростатический, адсорбционно-соль­ват­ный и энтропийный факторы.

Электростатический фактор обусловлен существованием на поверхности частиц дисперсной фазы двойного электрического слоя. Главные составляющие электростатического фактора - это одноимённый заряд гранул всех коллоидных частиц, значение электрокинетического потенциала, а также уменьшение межфазного поверхностного натяжения вследствие адсорбции электролитов (особенно в тех случаях, когда электролитами являются ионогенные ПАВ).

Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.

Адсорбционно-сольватный фактор связан с гидратацией (сольватацией) как самих частиц дисперсной фазы, так и адсорбированных на их поверхности ионов или незаряженных молекул ПАВ. Гидратные оболочки и адсорбционные слои связаны с поверхностью частиц силами адгезии. Поэтому для непосредственного соприкосновения агрегатов сталкивающиеся частицы должны обладать энергией, необходимой не только для преодоления электростатического барьера, но и превышающей работу адгезии.

Энтропийный фактор заключается в стремлении дисперсной фазы к равномерному распределению частиц дисперсной фазы по объёму системы в результате диффузии. Этот фактор проявляется, главным образом, в ультрамикрогетерогенных системах, частицы которых участвуют в интенсивном броуновском движении.

К кинетическим факторам устойчивости относятся структурно-механи­ческий и гидродинамический факторы.

Структурно-механический фактор связан с тем, что существующие на поверхности частиц гидратные (сольватные) оболочки обладают повышенной вязкостью и упругостью. Это создаёт дополнительное отталкивающее усилие при столкновении частиц – так называемое расклинивающее давление . В расклинивающее давление вносит вклад также и упругость самих адсорбционных слоёв. Учение о расклинивающем давлении было разработано Б. В. Дерягиным (1935).



Гидродинамический фактор связан с вязкостью дисперсионной среды. Он снижает скорость разрушения системы благодаря замедлению движения частиц в среде с большой вязкостью. Наименее выражен этот фактор в системах с газовой средой, а наибольшее его проявление наблюдается в системах с твёрдой средой, где частицы дисперсной фазы вообще лишены подвижности.

В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.

Коагуляция

Как уже говорилось выше, в основе коагуляции лежит нарушение агрегативной устойчивости системы, приводящее к слипанию частиц дисперсной фазы при их столкновениях. Внешне коагуляция коллоидных растворов проявляется в виде помутнения, иногда сопровождающегося изменением цвета, с последующим выпадением осадка.



В образующихся при коагуляции агрегатах первичные частицы связаны друг с другом или через прослойку дисперсионной среды, или непосредственно. В зависимости от этого агрегаты могут быть или рыхлыми, легко подающимися пептизации, или достаточно прочными, часто необратимыми, которые пептизируются с трудом или вообще не пептизируются. В системах с жидкой дисперсионной средой, особенно при большой концентрации частиц дисперсной фазы, выпадение образующихся агрегатов в осадок часто сопровождается структурообразованием – образованием коагеля или геля, охватывающего весь объём системы.

Первой стадией коагуляции золя при нарушении его устойчивости является скрытая коагуляция , которая заключается в объединении лишь незначительного числа частиц. Скрытая коагуляция обычно не фиксируется невооружённым глазом и может быть отмечена лишь при специальном исследовании, например, с помощью ультрамикроскопа. Вслед за скрытой коагуляцией наступает явная , когда объединяется уже настолько значительное количество частиц, что это приводит к хорошо заметным изменению цвета, помутнению золя и выпадению из него рыхлого осадка (коагулята ). Возникающие в результате потери агрегативной устойчивости коагуляты представляют собой оседающие (или всплывающие) образования различной структуры - плотные, творожистые, хлопьевидные, волокнистые, кристаллоподобные. Структура и прочность коагулятов в значительной степени определяется степенью сольватации (гидратации) и присутствием на частицах адсорбированных веществ различной природы, в том числе ПАВ.

П. А. Ребиндером было подробно изучено поведение золей при коагуляции с не полностью снятыми защитными факторами и показано, что в таких случаях наблюдается коагуляционное структурообразование, приводящие к появлению гелеобразных систем (строение которых будет рассмотрено в главе 11).

Процесс, обратный коагуляции, называется пептизацией(см. п. 4.2.3). В ультрамикрогетерогенных системах, в которых энергия броуновского движения соизмерима с энергией связи частиц в агрегатах (флокулах), между коагуляцией и пептизацией может устанавливаться динамическое равновесие. Оно должно отвечать условию

½ zE = kT ln (V з /V к),

где z – координационное число частицы в пространственной структуре коагулята (иначе, - число контактов одной частицы в образующемся агрегате с другими частицами, входящими в него), E – энергия связи между частицами, находящимися в контакте, k – константа Больцмана, T – абсолютная температура, V з – объём, приходящийся на одну частицу в коллоидном растворе, после образования коагулята (если концентрация частиц при этом равна n частиц/м 3 , то V з = 1/n ,), V к – эффективный объём, приходящийся на одну частицу внутри коагуляционной структуры (или объём, в котором она колеблется относительно положения равновесия).

В лиофобных дисперсных системах после коагуляции концентрация частиц в равновесном золе обычно пренебрежимо мала по сравнению с их концентрацией. Поэтому в соответствии с вышеприведённым уравнением коагуляция является, как правило, необратимой. В лиофильных системах значения энергии связи между частицами невелики и поэтому

½ zE < kT ln (V з /V к),

то есть коагуляция или невозможна, или в высокой степени обратима.

Причины, вызывающие коагуляцию, могут быть самыми различными. Это и механические воздействия (перемешивание, вибрация, встряхивание), и температурные (нагревание, кипячение, охлаждение, замораживание), и другие, часто трудно объяснимые и непредсказуемые.

Но наиболее важной в практическом отношении и вместе с тем наиболее хорошо изученной является коагуляция под действием электролитов или электролитная коагуляция.

Как указывалось в § 106, качественная особенность дисперсных систем состоит в их агрегативной неустойчивости.

Предотвращение агрегации первичных дисперсных частиц возможно в результате действия трех факторов устойчивости дисперсных систем: 1) кинетического, 2) электрического и 3) структурно-механического.

Необходимым условием слипания двух частиц дисперсной фазы является их сближение, достаточное для проявления сил притяжения. Если частота столкновений коллоидных частиц мала, то дисперсная система может быть устойчивой (кинетический фактор устойчивости). Это может иметь место при очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды (например, в дисперсных системах типа ).

Рис. 102. Схема перекрывания ионных атмосфер двух коллоидных частиц.

Большинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды содержат еще компонент, являющийся стабилизатором дисперсности. Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (стр. 324),

Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. Такая стабилизация имеет основное значение для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидролизе все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном сближении, когда происходит перекрывание их ионных атмосфер (рис. 102). Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние между ними и чем больше толщина двойного электрического слоя.

Кроме электростатического отталкивания между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы. Действующие между отдельными молекулами дисперсионные силы быстро убывают с увеличением расстояния между ними. Но взаимодействие коллоидных частиц обусловлено суммированием дисперсионных сил притяжения между всеми молекулами, находящимися на поверхности контакта коллоидных частиц. Поэтому силы притяжения между коллоидными частицами убывают медленнее и проявляются на больших расстояниях, чем в случае отдельных молекул.

Потенциальная энергия взаимодействия (U) между коллоидными частицами представляет собой алгебраическую сумму потенциальной энергии электростатического отталкивания и потенциальной энергии дисперсионного притяжения между ними:

Если (по абсолютной величине), то отталкивание преобладает над притяжением и дисперсная система устойчива.

Рис. 103. Потенциальная энергия взаимодействия между двумя одинаково заряженными частицами: 1 - электрическое отталкивание 2 - дисперсионное притяжение ; 3 - результирующая энергия взаимодействия ; 4 - то же, но при более крутом падении кривой ; х - расстояние между частицами; - потенциальный барьер взаимодействия дисперсных частиц.

Если , то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в более крупные агрегаты и седиментация последних. Коллоидный раствор коагулирует, т. е. разделяется на коагулят (осадок) и дисперсионную среду.

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем, развитой впервые Б. В. Дерягиным , а затем Л. Д. Ландау и голландскими учеными Фервеем и Овербеком (1948 г.); по первым буквам фамилий авторов ее называют теорией ДЛФО.

На рис. 103 приведены зависимости величин и от расстояния между коллоидными частицами. При этом, как принято в физике, потенциальной энергии притяжения приписывается знак минус, а отталкивания - знак плюс. Как видно, результирующая энергия взаимодействия (кривая 3 на рис. 103) приводит к притяжению на очень малых и отталкиванию на больших расстояниях между частицами. Решающее значение для устойчивости дисперсных систем имеет величина потенциального барьера отталкивания , которая, в свою очередь, зависит от хода кривых и . При больших значениях этого барьера коллоидная система устойчива. Слипание коллоидных частиц возможно лишь при достаточном их сближении. Это требует преодоления потенциального барьера отталкивания. При некоторых небольших положительных значениях (кривая 3) преодолеть его могут лишь немногие коллоидные частицы с достаточно кинетической энергией. Это соответствует стадии медленной коагуляции, когда только небольшая часть соударений коллоидных частиц приводит к их слипанию. При медленной коагуляции со временем происходит некоторое уменьшение общего числа коллоидных частиц в результате образования агрегатов из первичных частиц, но коагулят не выпадает. Подобную коагуляций, не сопровождающуюся видимым изменением коллоидного раствора, называют скрытой коагуляцией.

При дальнейшем уменьшении потенциального барьера скорость коагуляции, характеризуемая изменением числа частиц в единицу времени, возрастает. Наконец, если потенциальный барьер переходит из области отталкивания в область притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция, когда каждое соударение коллоидных частиц приводит к их слипанию; в коллоидном растворе образуется осадок - коагулят, происходит явная коагуляция.

Потенциальный барьер отталкивания возникает в результате суммирования сил отталкивания и притяжения, действующих между коллоидными частицами. Поэтому все факторы, влияющие на ход кривых 1 и 2 (рис. 103), приводят к изменению как величины , так и положения максимума (т. е. расстояния X, соответствующего ).

Значительное уменьшение происходит в результате изменения потенциальной энергии электростатического отталкивания (т. е. хода кривой 1), вызванного добавлением электролитов к коллоидному раствору. С увеличением концентрации любого электролита происходит перестройка двойного электрического слоя, окружающего коллоидные частицы: все большая часть противо-ионов вытесняется из диффузной в адсорбционную часть двойного Электрического слоя. Толщина диффузной части двойного электрического слоя (слой 4 на рис. 100), а вместе с ней и всего двойного электрического слоя (слой 2 на рис. 100) уменьшается. Поэтому кривая потенциальной энергии электростатического отталкивания снижается более круто, чем показанная на рис. 103 кривая 1. В результате этого потенциальный барьер отталкивания уменьшается и смещается в сторону меньшего расстояния между коллоидными частицами. Когда двойной электрический слой сжимается до толщины адсорбционного слоя (слой 8 на рис. 100), то вся кривая взаимодействия дисперсных частиц оказывается в области притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция. Такое изменение устойчивости коллоидного раствора происходит при добавлении любого электролита.

Коагулирующее действие электролитов характеризуют порогом коагуляции, т. е. наименьшей концентрацией электролита, вызывающей коагуляцию. В зависимости от природы электролита и коллоидного раствора порог коагуляции изменяется в пределах от до 0,1 моль в литре золя. Наиболее существенное влияние на порог коагуляции оказывает заряд коагулирующего иона электролита, т. е. иона, заряд которого противоположен по знаку заряду коллоидной частицы.

Многозарядные противоионы электролита имеют повышенную адсорбционную способность по сравнению с однозарядными и проникают в адсорбционную часть двойного электрического слоя в больших количествах. При этом порог коагуляции уменьшается не пропорционально заряду противоиона, а значительно быстрее.

Блестящим подтверждением теории ДЛФО явился расчет Б. В. Дерягиным и Л. Д. Ландау (1941 г.) соотношения значений порогов коагуляции вызываемой электролитами, содержащими ионы с разной величиной заряда. Оказалось, что порог коагуляции обратно пропорционален шестой степени заряда коагулирующего иона. Следовательно, значения порогов коагуляции для одно-, двух-, трех- и четырехзарядных ионов должны относиться, как

что близко к соотношениям концентраций электролитов, которые наблюдались при коагуляции разнообразных гидрозолей. Сказанное иллюстрируют данные табл. 22, где приведены эквивалентные концентрации электролитов , вызывающие коагуляцию гидрозоля оксида .

Таблица 22. Пороги коагуляции отрицательно заряженного золя электролитами

Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению.

Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде.

Однако стабилизация дисперсных систем значительно более эффективна при добавлений к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводиых, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах - мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами.

Различают термодинамические и кинетические факторы устойчивости,

К термодинамическим факторам относятся электростатический, адсорбционно-соль­ват­ный и энтропийный факторы.

Электростатический фактор обусловлен существованием на поверхности частиц дисперсной фазы двойного электрического слоя. Главные составляющие электростатического фактора - это одноимённый заряд гранул всех коллоидных частиц, значение электрокинетического потенциала, а также уменьшение межфазного поверхностного натяжения вследствие адсорбции электролитов (особенно в тех случаях, когда электролитами являются ионогенные ПАВ).

Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.

Адсорбционно-сольватный фактор связан с гидратацией (сольватацией) как самих частиц дисперсной фазы, так и адсорбированных на их поверхности ионов или незаряженных молекул ПАВ. Гидратные оболочки и адсорбционные слои связаны с поверхностью частиц силами адгезии. Поэтому для непосредственного соприкосновения агрегатов сталкивающиеся частицы должны обладать энергией, необходимой не только для преодоления электростатического барьера, но и превышающей работу адгезии.

Энтропийный фактор заключается в стремлении дисперсной фазы к равномерному распределению частиц дисперсной фазы по объёму системы в результате диффузии. Этот фактор проявляется, главным образом, в ультрамикрогетерогенных системах, частицы которых участвуют в интенсивном броуновском движении.

К кинетическим факторам устойчивости относятся структурно-механи­ческий и гидродинамический факторы.

Структурно-механический фактор связан с тем, что существующие на поверхности частиц гидратные (сольватные) оболочки обладают повышенной вязкостью и упругостью. Это создаёт дополнительное отталкивающее усилие при столкновении частиц – так называемое расклинивающее давление . В расклинивающее давление вносит вклад также и упругость самих адсорбционных слоёв. Учение о расклинивающем давлении было разработано Б. В. Дерягиным (1935).

Гидродинамический фактор связан с вязкостью дисперсионной среды. Он снижает скорость разрушения системы благодаря замедлению движения частиц в среде с большой вязкостью. Наименее выражен этот фактор в системах с газовой средой, а наибольшее его проявление наблюдается в системах с твёрдой средой, где частицы дисперсной фазы вообще лишены подвижности.

В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.

Кандидат химических наук, доцент

Тема 2. Свойства дисперсных систем,

их устойчивость и коагуляция

Занятие 2. Устойчивость дисперсных систем

Л е к ц и я

Саратов – 2010

Если осадок AgCl получают в избытке AgNO3, то коллоидная мицелла будет иметь другое строение. На агрегате AgCl будут адсорбироваться потенциалопределяющие ионы Ag+, а противоионами будут являться ионы NO3–.

Для нерастворимого в воде сульфата бария (полученного в избытке BaCl2) строение колллоидной частицы можно изобразить формулой:

BaCl2(изб.) + NaSO4 ® BaSO4(тв. ф.) + 2NaCl

В электрическом поле положительно заряженная гранула будет перемещаться к отицательно заряженному катоду.

2. ФИЗИЧЕСКАЯ ТЕОРИЯ УСТОЙЧИВОСТИ И КОАГУЛЯЦИИ

Коллоидная устойчивость – способность дисперсной системы сохранять неизменным свой состав (концентрацию дисперсной фазы и распределение частиц по размерам), а также внешний вид: окраску, прозрачность, «однородность».

Следует указать на резкое различие в отношении устойчивости между двумя классами коллоидов: лиофильными и лиофобными . Лиофильные коллоиды обладают высоким сродством к дисперсионной среде, они самопроизвольно диспергируются и образуют термодинамически устойчивые коллоидные растворы. У лиофобных коллоидов степень сродства к растворителю намного меньше, их дисперсии термодинамически неустойчивы и характеризуются высокими значениями поверхностного натяжения на межфазной границе. Именно устойчивость и коагуляцию лиофобных золей мы будем изучать.

Коллоидную устойчивость условно классифицируют на седиментационную (кинетическую) и агрегативную .

Седиментационная устойчивость определяется способностью системы противодействовать оседанию частиц. Седиментация, или оседание частиц, приводит к разрушению дисперсной системы. Дисперсная система считается седиментационно устойчивой , если ее дисперсные частицы не оседают, система не разделяется на фазы, т. е. находится в стабильном диффузионно-седиментационном равновесии.

Седиментационная устойчивость в первую очередь зависит от размеров частиц дисперсной фазы. Если размер их менее 1000 нм, то система обычно обладает высокой седиментационной устойчивостью. В случае более крупных частиц система неустойчива, т. е. со временем расслаивается, частицы дисперсной фазы либо всплывают, либо образуют осадок.

Агрегативная устойчивость определяется способностью дисперсной системы противодействовать слипанию частиц, то есть сохранять неизменными размеры частиц дисперсной фазы. Но из-за стремления систем «избавиться» от свободной энергии (в данном случае – от поверхностной энергии), частицы дисперсной фазы склонны к укрупнению путем их слияния или перекристаллизации.

Под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы, заключающуюся в слипании и слиянии частиц.

Если размеры частиц дисперсной фазы постоянны, не изменяются во времени, то коллоидно-дисперсные системы бесконечно долго могут сохранять седиментационную устойчивость. Укрупнение частиц в дисперсной системе (потеря агрегативной устойчивости) приводит к нарушению седиментационной устойчивости и выпадению осадка.

Количественные соотношения, характеризующие устойчивость лиофобных золей в удовлетворительном согласии с экспериментом, были получены на основе физической теории устойчивости и коагуляции.

Физическая теория устойчивости и коагуляции (ДЛФО)

В наиболее общем виде эта теория была разработана советскими учеными и в г. г., а несколько позднее, независимо от них голландскими учеными Фервеем и Овербеком. По первым буквам фамилий этих ученых теория названа теорией ДЛФО.

В основе теории устойчивости коллоидных систем должно лежать соотношение между силами притяжения и отталкивания частиц. В теории ДЛФО учитывается электростатическое отталкивание между частицами и межмолекулярное притяжение.

Электростатическое отталкивание между одноименно заряженными частицами происходит в том случае, если они подходят друг к другу на достаточно близкое расстояние, их двойные электрические слои перекрываются и отталкиваются.

а) отталкивание отсутствует б) частицы отталкиваются

(ДЭС не перекрываются) (ДЭС перекрываются)

В результате достаточно сложных расчетов (которые мы опускаем) получают выражения для энергии электростатического отталкивания частиц. В соответствии с этим выражением энергия отталкивания частиц возрастает с уменьшением расстояния между ними по экспоненциальному закону

где Uэ – энергия отталкивания;

c – потенциал на поверхности частиц;

h – расстояние между частицами.

Второй род сил, влияющих на устойчивость золя, – силы притяжения между частицами. Они имеют ту же природу, что и силы, действующие между нейтральными молекулами. Существованием этих сил Ван-дер-Ваальс объяснял свойства реальных газов и жидкостей. Возникновение межмолекулярных сил обусловлено взаимодействием диполей (эффект Кеезона), поляризацией одной молекулы другой (эффект Дебая) и дисперсионными силами Лондона, которые связаны с наличием в нейтральных атомах и молекулах мгновенных диполей.

Наиболее универсальной составляющей молекулярных сил притяжения является дисперсионная составляющая. Расчеты, проведенные Гамакером, привели к следующему выражению для энергии молекулярного притяжения (для параллельных пластин, находящихся на небольших расстояниях друг от друга).


Рис. 2. Потенциальные кривые

Вид кривых суммарной энергии взаимодействия частиц зависит от потенциала на их поверхности, от величины константы Гамакера, от размера частиц и их формы. Поэтому в зависимости от всех этих факторов различают три наиболее характерных вида потенциальных кривых, отвечающих определенным состояниям агрегативной устойчивости (рис.3).

Рис. 3. Потенциальные кривые для дисперсных систем

с различной агрегативной устойчивостью

Кривая 1 соответствует такому состоянию системы, при котором на любом расстоянии между частицами энергия притяжения преобладает над

энергией отталкивания. Система неустойчива, быстро коагулирует.

Кривая 2 указывает на наличие достаточно высокого потенциального барьера и вторичного минимума. В этом случае легко образуются флокулы, в которых частицы разделены прослойками среды. Это происходит во вторичном минимуме. Такое состояние отвечает обратимости коагуляции. При некоторых условиях может быть преодолен потенциальный барьер и произойдет необратимая коагуляция в первичном минимуме.

Кривая 3 отвечает состоянию системы с высоким потенциальным барьером при отсутствии второго минимума. Такие системы обладают большой агрегативной устойчивостью.

3. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ КОАГУЛЯЦИИ ПОД

ДЕЙСТВИЕМ ЭЛЕКТРОЛИТОВ

Причиной коагуляции могут быть действие теплоты и холода, электромагнитных полей, жестких излучений, механические воздействия, химические агенты.

Чаще всего причиной коагуляции является действие электролита.

Электролиты изменяют структуру ДЭС, уменьшают дзета-потенциал (либо за счет адсорбции ионов электролита на частицах, либо за счет сжатия диффузной части ДЭС), что приводит к уменьшению электростатического отталкивание между частицами. В соответствии с теорией ДЛФО вследствие этого частицы могут подойти друг к другу на расстояния, при которых преобладают силы притяжения, что может вызвать их слипание и коагуляцию.

Порогом коагуляции (обозначается Cк, g) называют минимальную концентрацию электролита, вызывающую за определенный промежуток времени определенный видимый эффект коагуляции (изменение цвета, помутнение, появление осадка). Порог коагуляции определяют либо визуально, наблюдая за изменениями в дисперсной системе при введении в нее растворов электролитов разной концентрации, либо регистрируют изменения с помощью соответствующих приборов, чаще всего, измеряя оптическую плотность или мутность системы.

Коагуляция подчиняется определенным правилам. Рассмотрим их.

Правила коагуляции

– Коагуляцию вызывают любые электролиты, если их концентрация

в системе превысит некоторый минимум, называемый порогом коагуляции. Причина заключается в сжатии ДЭС. Порог коагуляции для разных электролитов и разных дисперсных систем различен.

– Коагулирующим действием обладает лишь тот ион электролита, заряд которого противоположен заряду коллоидной частицы, причем его коагулирующая способность выражается тем сильнее, чем выше валентность противоиона. Эта закономерность называется правилом Шульце-Гарди. В соответствии с этим правилом соотношение порогов коагуляции одно-; двух - и трехвалентных противоионов выглядит следующим образом:

Например, для золя сульфида мышьяка As2S3 , частицы которого имеют отрицательный заряд, пороги коагуляции различных электролитов имеют следующее значение: LiCl – 58 ммоль/л; MgCl2 – 0,71 ммоль/л, AlCl3 – 0,043 ммоль/л.

В ряду органических ионов коагулирующее действие возрастает с повышением адсорбционной способности, а следовательно с нейтрализацией заряда.

– В ряду неорганических ионов с одинаковым зарядом их коагулирующая активность возрастает с уменьшением их гидратации (или с увеличением радиуса). Например, в ряду одновалентных катионов и анионов коагулирующая активность и гидратация изменяются следующим образом:

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминия , кремния, железа).

3. Энтропийный фактор , как и первые два, относятся к термодинамическим. Он действует в системах, в которых частицы или их поверхностные силы участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему системы, а это уменьшает вероятность столкновения частиц и их слипания.

Энтропийное отталкивание можно объяснить, исходя из непосредственного взаимодействия частиц с поверхностными слоями, в которых есть подвижные противоионы или длинные и гибкие радикалы поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений (ВМС). Такие радикалы обладают множеством конформаций. Сближение частиц приводит к уменьшению степеней свободы или конформаций, а это приводит к уменьшению энтропии, и, следовательно, к увеличению свободной поверхностной энергии, что является термодинамически невыгодным процессом. Таким образом, этот фактор способствует отталкиванию частиц.

4. Структурно-механический фактор является кинетическим. Его действие обусловлено тем, что на поверхности частиц имеются пленки, обладающие упругостью, разрушение которых требует затраты энергии и времени. Обычно такую пленку получают, вводя в систему стабилизаторы – ПАВ и ВМС (коллоидная защита). Высокие прочностные характеристики поверхностные слои приобретают благодаря переплетению цепей ВМС и длинноцепочечных ПАВ, а иногда и в результате полимеризации.

Действие структурно-механического и других факторов проявляется в таком явлении как коллоидная защита

Коллоидной защитой называется повышение устойчивости коллоидных систем за счет образования на поверхности частиц адсорбционного слоя при введении в золь определенных высокомолекулярных веществ.

Веществами, способными обеспечивать коллоидную защиту, являются белки, углеводы, пектины, а для систем с неводной дисперсионной средой – каучук. Защищающие вещества адсорбируются на поверхности дисперсных частиц, что способствует уменьшению поверхностной энергии системы. Это приводит к повышению ее термодинамической устойчивости и обеспечивает коллоидную устойчивость. Такие системы настолько устойчивы, что приобретают способность к самопроизвольному образованию. Например, растворимый кофе представляет собой тонко помолотый кофейный порошок, обработанный пищевыми поверхностно-активными веществами.

Для оценки стабилизирующего действия различных веществ введены условные характеристики: «золотое число», «рубиновое число» и т. д.

Золотое число – это минимальная масса (в мг) стабилизирующего вещества, которая способна защитить 10 мл красного гидрозоля золота (воспрепятствовать изменению цвета) от коагулирующего действия 1 см3 10%-ного раствора хлорида натрия.

Рубиновое число – это минимальная масса (в мг) стабилизирующего вещества, которая способна защитить 10 см3 раствора красителя конго красного (конго-рубина) с массовой концентрацией 0,1 кг/м3 от коагулирующего действия 1 см3 10%-ного раствора хлорида натрия.

Например, золотое число картофельного крахмала равно 20. Это означает, что 20 мг крахмала при введении его в золь золота препятствуют коагуляции золя при добавлении к золю электролита-коагулятора – 1 см3 10%-ного раствора хлорида натрия. Без добавления стабилизирующего вещества – крахмала золь золота в таких условиях коагулирует (разрушается) мгновенно.

В таблице 1 приведены значения наиболее распространенных чисел для некоторых защитных веществ.

Защитное действие имеет большое промышленное значение. Оно учитывается при изготовлении лекарственных препаратов, пищевых продуктов, технических эмульсий, катализаторов и т. д.

Таблица 1. Значения наиболее распространенных чисел для некоторых защитных веществ

Защитное вещество

Золотое число

Рубиновое число

Гемоглобин

Декстрин

Крахмал картофельный

Казеинат натрия

ЗАКЛЮЧЕНИЕ

На сегодняшней лекции мы рассмотрели строение частиц дисперсной фазы и основные факторы, влияющие на устойчивость и разрушение дисперсных систем. Эти факторы необходимо учитывать при получении устойчивых коллоидных систем, таких как эмульсии, аэрозоли, суспензии, а также при разрушении «вредных» дисперсных систем, образующихся в процессе промышленного производства.

Доцент кафедры ФОХ

термодинамические кинетические

(↓) .(↓скорости коагуляциииз-за гидродинамических свойств среды)

а) электростатический фактор – ↓ из-за а) гидродинамический фактор

образования ДЭС

б) адсорбционно-сольватный фактор - ↓ б)структурно- механический

из-за адсорбции и сольватации поверхности фактор

в) энтропийный фактор

Термодинамические факторы:

Электростатический фактор способствует созданию электростатических сил отталкивания, возрастающих при увеличении поверхностного потенциала частиц, и особенно ζ- потенциала.

Адсорбционно-сольватный фактор обусловлен уменьшением в результате сольватации поверхности частиц. Поверхность частиц при этом лифильна по своей природе или из-за адсорбции стабилизаторов-неэлектролитов. Такие системы могут быть агрегативно устойчивыми даже при отсутствии потенциала на поверхности частиц.

Лиофилизовать лиофобные системы можно, адсорбировав на их поверхности молекулы, с которыми их среда взаимодействует. Это ПАВ, ВМС, и в случае эмульсий – тонкодисперсные порошки, смачиваемые средой.

Адсорбция таких веществ сопровождается сольватацией и ориентацией молекул в согласии с полярностью контактирующих фаз (правило Ребиндера). Адсорбция ПАВ приводит к снижению поверхностной энергии Гиббса и тем самым - к повышению термодинамической устойчивости системы

Энтропийный фактор особую роль играет в системах с частицами малых размеров, так как вследствие броуновского движения частицы дисперсной фазы равномерно распределяются по объёму системы. В результате повышается хаотичность системы (хаотичность её меньше, если частицы находятся в виде осадка на дне сосуда), как следствие, возрастает и её энтропия. Это приводит к увеличению термодинамической устойчивости системы, достигаемой за счёт снижения общей энергии Гиббса. Действительно, если в ходе какого-либо процесса S > 0, то согласно уравнению

G = H - TS,

такой процесс идет с уменьшением энергии Гиббса G

Кинетические факторы:

Структурно-механический фактор устойчивости возникает при адсорбции ПАВ и ВМС на поверхности частиц, которые приводят к образованию адсорбционных слоев, обладающих повышенными структурно-механическими свойствами. К таким веществам относятся: длинноцепочечные ПАВ, большинство ВМС, например, желатин, казеин, белки, мыла, смолы. Концентрируясь на поверхности частиц, они могут образовывать гелеобразную пленку. Эти адсорбционные слои являются как бы барьером на пути сближения частиц и их агрегации.

Одновременное снижение поверхностного натяжения в этом случае приводит к тому, что этот фактор становится универсальным для стабилизации всех дисперсных систем.

Гидродинамический фактор устойчивости проявляется в сильновязких и плотных дисперсионных средах, в которых скорость движения частиц дисперсной фазы мала и их кинетической энергии недостаточно, чтобы преодолеть даже малый потенциальный барьер отталкивания.

В реальных коллоидных системах обычно действует сразу несколько термодинамических и кинетических факторов устойчивости. Например, устойчивость мицелл полистирольного латекса (см. главу 5) обеспечивается ионным, структурно-механическим и адсорбционно-сольватным факторами устойчивости.

Следует отметить, что каждому фактору устойчивости соответствует свой специфический метод его нейтрализации. Например, действие ионного фактора значительно снижается при введении электролитов. Действие структурно-механического фактора можно предотвратить с помощью веществ – т.н. деэмульгаторов (это – обычно короткоцепочечные ПАВ), разжижающих упругие структурированные слои на поверхности частиц, а также механическим, термическим и другими способами. В результате происходит потеря агрегативной устойчивости систем и коагуляция .

Механизмы действия стабилизаторов

Стабилизаторы создают на пути слипания частиц потенциальный или структурно-механический барьер и при его достаточной высоте термодинамически неустойчивая система может существовать достаточно долго по чисто кинетическим причинам, находясь в метастабильном состоянии.

Рассмотрим более подробно электростатический фактор устойчивости или ионный фактор стабилизации дисперсных систем.

6.3. Ионный фактор стабилизации дисперсных систем

Теория устойчивости лиофобных золей ДЛФО

Адсорбционная, электростатическая и ряд других теорий устойчивости и коагуляции не могли объяснить ряд наблюдаемых для дисперсных систем фактов. Их важнейшие положения вошли составной частью в современную теорию устойчивости, которая хорошо согласуется с поведением типично лиофобных золей.

Образование ДЭС приводит с одной стороны к уменьшению межфазного натяжения, что повышает термодинамическую устойчивость систем, а с другой стороны, создает на пути агрегации частиц потенци­альный барьер электростатического отталкивания, обуславливая т.н. ионный (электростатический) фактор устойчивости .

Рассмотрим природу этого барьера. Согласно теории устойчивости гидрофобных коллоидов Дерягина (*) , Ландау (*) , Фервея (*) , Овербека (*) (теория ДЛФО) , между частицами, имеющими ДЭС, действуют силы притяжения и силы отталкивания. Силы отталкивания вызываются расклинивающим давлением: при сближении частиц происходит перекрывание диффузных частей ДЭС и концентрация противоионов между частицами становится выше, чем внутри фазы. Возникает поток дисперсионной среды в пространство между частицами, стремящийся разъединить их. Этот поток и создает расклинивающее давление . Согласно теории ДЛФО энергия отталкивания частиц выражается уравнением:

Современная физическая теория устойчивости была развита российскими учеными Дерягиным и Ландау (1937) и получила всеобщее признание. Несколько позднее (1941) теоретическая разработка, которая привела к тем же результатам, была осуществлена голландскими учеными Фервеем и Овербеком. В соответствии с первыми буквами авторов теория устойчивости известна как теория ДЛФО (DLVO).

Межфазное поверхностное натяжение дисперсных систем не является единственной причиной агрегативной устойчивости. При сближении одноименно заряженных частиц золей их диффузные слои перекрываются. Это взаимодействие протекает в тонкой прослойке дисперсионной среды, разделяющей частицы.

Устойчивость лиофобных золей определяется особыми свойствами этих жидких слоев. Утончение этого слоя заканчивается либо его разрывом при некоторой малой толщине, либо достижением некоторой равновесной толщины, которая далее не уменьшается. В первом случае частицы слипаются, во втором – нет.

Утончение тонкого слоя происходит путем вытекания из его жидкости. Когда жидкий слой становится тонким (100 – 200 нм), свойства жидкости в нем начинают сильно отличаться от свойств жидкости в объёме. В слое появляется дополнительное давление , которое Дерягин назвал «расклинивающим давлением» π.

Расклинивающее давление – это избыточное давление, которое необходимо приложить к поверхностям, ограничивающим тонкую пленку, чтобы ее толщина оставалась постоянной или могла быть обратимо изменена в термодинамически равновесном процессе.

Положительное расклинивающее давление возникает, когда:

«+» Р в слое 0. Это препятствует вытеканию из него жидкости, т.е. сближению частиц;

«расклинивающее давление», т.е. раздвигает, расклинивает:

Отрицательное расклинивающее давление π

«-« когда давление в слое растет, что способствует сближению частиц

Рассмотрим случаи сближения частиц дисперсной фазы на разные расстоняия:

Нет расклинивающего давления, h > 2δ

(толщина диффузного слоя)

Р о Р о «+» - Р

В тонкую прослойку,

«-» - жидкость будет вытекать из зазора, а

Р Р частицы сближаться

Рис.6.1. Образование расклинивающего давления в тонких слоях

До перекрывания диффузных слоев энергия Е свободных дисперсных систем была неизменной, а Р в зазоре = Р о (давление внутри свободной жидкости).

После перекрывания свободная энергия изменяется, а в прослойке жидкости возникает направленное в сторону соприкасающихся тел Р.д.

Представление о расклинивающем давлении – одно из фундаментальных в физико-химии дисперсных систем. Расклинивающее давление возникает всегда, когда между частицами дисперсной фазы (твёрдыми, жидкими или газообразными) образуется тонкая прослойка жидкости. В слое воды толщиной 1 мкм, заключённой между двумя поверхностями слюды, расклинивающее давление равно 430 Па. При толщине прослойки воды 0,04 мкм расклинивающее давление существенно выше и составляет 1,8810 4 Па.

Для изучения строения пленки и измерения ее толщины обычно используют оптические и, прежде всего, интероферометрические методы.

Интенсивность I отраженного света вследствие интерференции сложным образом зависит от отношения толщины пленки к длине падающей световой волны.

1/4 3/4 5/4 7/4 h/λ

Рис. 6.2. Зависимость I отраженного монохроматического света от относительной толщины пленки.

У толстых пленок: h=(k+½)λ/2n.

k – порядок интерференции

n – показатель преломления.

В белом свете тонкие пленки окрашены в различные цвета. Тонкие пленки с h≤ λ/10 кажутся в отраженном свете – серыми, а более тонкие – черными.

Для серых и черных пленок измерение интенсивности I позволяет определить их h, а зависимость I=f(t) – кинетику утончения.

Силы отталкивания в тонких пленках носят электростатический характер:коллоидная система, состоящая из воды, белков... использует достижения органической, неорганической и аналитической химии , процессы и аппараты химической и...

  • Белки и нуклеиновые кислоты

    Учебное пособие >> Химия

    ТЕХНОЛОГИИ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ БИОЛОГИЧЕСКАЯ ХИМИЯ КОНСПЕКТ ЛЕКЦИЙ для студентов специальностей 49 ... определенных условиях белковые растворы образуют коллоидные системы – гели или студни... вода, окружающая толстым слоем коллоидные частицы белка, а так...

  • Экологические аспекты преподавания темы Р-элементы на уроках химии и экологии

    Курсовая работа >> Педагогика

    Проведения лекции по теме учителем совместно с учащимися составляются опорные конспекты . ... реакций с домашним заданием. Коллоидные частицы Лабораторный опыт 21 ... в химии . М.: Просвещение, 1981, 192 с. Рудзитис Г. Е. Химия : Неорган. химия . Орган. Химия : Учеб...

  • Основы экологии (10)

    Реферат >> Экология

    Необходимость подготовки и опубликования конспекта лекций , который может быть... или коричневой окраски, обогащённый коллоидно -дисперсными минералами. Нижележащий горизонт... отстойники, центрифугирование, фиьтрорвание. Хим , физ-хим и биол очистка. флотация...

  • Теория химии . Органическая и неорганическая химия и методика ее преподавания

    Конспект >> Химия

    ... химии . Хар-ка структ. эл-тов с-мы. В л-с с-ме лекция ... закрепление в конце лекции . Дидактич. условия лекции : высокая целенаправленность лекции , повышенная информированность, ... воде, в горячей воде образует коллоидный раствор. Макромолекулы крахмала построены...

  •